skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jett, Brianna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nonaqueous redox flow batteries (NARFBs) offer a promising solution for large-scale storage of renewable energy. However, crossover of redox active molecules between the two sides of the cell is a major factor limiting their development, as most selective separators are designed for deployment in water, rather than organic solvents. This report describes a systematic investigation of the crossover rates of redox active organic molecules through an anion exchange separator under RFB-relevant non-aqueous conditions (in acetonitrile/KPF6) using a combination of experimental and computational methods. A structurally diverse set of neutral and cationic molecules was selected, and their rates of crossover were determined experimentally with the organic solvent-compatible anion exchange separator Fumasep FAP-375-PP. The resulting data were then fit to various descriptors of molecular size, charge, and hydrophobicity (overall charge, solution diffusion coefficient, globularity, dynamic volume, dynamic surface area, clogP). This analysis resulted in multiple statistical models of crossover rates for this separator. These models were then used to predict tether groups that dramatically slow the crossover of small organic molecules in this system. 
    more » « less